Fifth Semester B.E. Degree Examination, May 2017 **Operating Systems**

Time: 3 hrs. Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Explain the advantages of layered approach, with a diagram. (06 Marks) Write the system call sequence to copy a file from source to destination. (07 Marks) b.
 - With a neat diagram, explain the concept of virtual machines. (07 Marks) C.
- 2 a. Explain the process states with diagram. (06 Marks) b. Explain the different multithreading models, with neat sketches. (06 Marks)
 - Consider the following set of processes. Draw Gantt charts and calculate average waiting time and average turnaround time using non-preemptive SJF and preemptive SJF scheduling (08 Marks) algorithms.

Process	Arrival time (ms)	Burst time (ms)
P ₁	0	8
P ₂	1	4
P ₃	2	9
P ₄	3	5

- Explain the critical section problem. List and explain the requirements to be met by a 3 solution to critical section problem. (08 Marks)
 - Describe the monitor solution to the classical dining-philosopher's problem. b. (08 Marks)
 - What do you mean by a binary semaphore and a counting semaphore? (04 Marks)
- What is deadlock? Explain the necessary conditions for its occurrence. (06 Marks) a.
 - System consists of five jobs (J₁, J₂, J₃, J₄, J₅) and three resources (R₁, R₂, R₃), Resource type R₁ has 10 instances, resource type R₂ has 5 instances and R₃ has 7 instances. The following snapshot of the system has been taken:

Jobs	Allocation			Maximum			Available		
	R_1	R ₂	R ₃	R_1	R ₂	R ₃	R_1	R ₂	R ₃
J_1	0	1	0	7	5	3	3	3	2
J ₂	2	0	0	3	2	2			
J_3	3	0	1	9	0	2			
J_4	2	1	1	2	2	2			
J_5	0	0	2	4	3	3			

(08 Marks)

- Describe RAG:
 - i) With deadlock
 - With a cycle but no deadlock. ii)

(06 Marks)

PART - B

5	a.	Explain internal and external Fragmentation with examples.			
	b.	Explain with a diagram, how TLB is used to solve the problem of simple paging s			
	c.	What is the cause of threshing? How does the system detect thrashing?	(06 Marks)		
6	a.	What is a file? Explain the different allocation methods.	(10 Marks)		
	b.	Explain different approaches to managing free space on disk storage.	(10 Marks)		
7		What is disk scheduling? Explain the following with diagram: i) FCFS; iii) SCAN.	ii) SSTF;(10 Marks)		
	b.	What is an access matrix? Explain the following operations in access matrix			
		example for each: i) Copy; ii) Transfer; iii) Limited copy.	(10 Marks)		
8	a.	Explain the different components of a Linux system.	(10 Marks)		
	b.	Discuss how memory management is dealt with in Linux operating system.	(10 Marks)		

* * * * *